

MONCRIEFF WEST Traffic Report

February 2014 Job No: C11075

TABLE OF CONTENTS

1	CURRENT STUDY	.1
2	MID-BLOCK ANALYSIS	.3
3	INTERSECTION ANALYSIS	.4

Table Index

Table 1	Forecast Suburb Population	1
Table 2	Adopted Suburb Generated Volume Split	1
Table 3	Group Centre Developments and Nearby Suburb Dwelling numbers	2
Table 4	Mid –Block two-way Traffic Volumes	3
Table 5	Level of Service Criteria for Intersections	5
Table 6	Summary of SIDRA outputs for year 2031 - Mirrabei Drive Extension Intersections	6
Table 7	Summary of SIDRA outputs 2031 AM Peak – Unsignalised Internal Intersections	6

Figure Index

Figure 1	Moncrieff Group Centre Traffic Flows	5
----------	--------------------------------------	---

Appendices

Appendix A Final Sidra Results

C121075

1 CURRENT STUDY

As part of the Moncrieff EDP, the September 2011 EMME model was requested from the Territory and Municipal Services (TAMS) to confirm the previously adopted traffic estimate. The following was agreed to be adopted for the Moncrieff West EDP, Mirrabei Drive design and redesign of Horse Park Drive Extension (HPDE):

 Adopt the traffic volumes shown in the September 2011 EMME model as a base to estimate the traffic volume on HPDE in the year 2021 and 2031. The estimated traffic volume shown in the 2011 EMME model is assumed to consider the following suburb developments as determined:

Suburb	2021 Population	2031 Population
Jacka	3,810	3,810
Taylor	7,976	7,976
Moncrieff	4,572	4,800
Ngunnawal	10,000	10,000
Casey	5,800	6,400

Table 1 Forecast Suburb Population

• TAMS also confirmed that a Jacka Suburb link was not shown in the right location and this link was moved to the approximate position of Jacka Access 2. The following volume, in vehicles per day (vpd) and directional split was used for the study:

Table 2	Adopted Suburb	Generated Volume Split
---------	----------------	-------------------------------

	Jacka Suburb Link Volume (vpd)	50% to HPDE (Mirrabei Dr – Katherine Ave) (vpd)	50% to HPDE (Mirrabei Dr – Burrumarra Ave) (vpd)
2021	4,590	2,295	2,295
2031	4,620	2,310	2,300

The following figures were provided by Land Development Agency (LDA) on the Group Centre locators and the number of dwellings in fully developed Moncrieff, Jacka and Taylor:

		Total area in m2	Percentage
Group Centre	Supermarket	2,500	28%
	Retail	4,170	47%
	Commercial	1,550	18%
	Community Facility	600	7%
	Residential	278 (dwellings)	
		Dwellings	
Suburb	Suburb Moncrieff East and West		
	Jacka	1,500	
	Taylor	3,140	

 Table 3
 Group Centre Developments and Nearby Suburb Dwelling numbers

2 MID-BLOCK ANALYSIS

LDA advised that full development figures in Moncrieff, Jacka and Taylor are to be adopted in estimating the traffic volume on Mirrabei Drive Extension and Horse Park Drive Extension in the year 2021 Traffic Analysis. Table 4 shows the computed values on Mirrabei Drive Extension of the daily vehicles derived from the assumptions outlined in the previous section.

Mid-block	Period	Volume (vpd)
Mirrabei Drive Extension	2021	11,340
Mirrabei Drive Extension	2031	11,860

Table 4 Mid–Block two-way Traffic Volumes

Section	September 2011 EMME Model (vpd)	
	2021	2031
Mirrabei Drive Extension between Horse Park Drive and Len Waters Street	11,340	11,860

Based on Austroads Guide to Traffic Management Part 3: Traffic Studies and Analysis Part 3 (2009), the mid-block capacity of one lane in each direction carriageway would be in the order of 1,500 vehicles/ hour. No duplication is foreseen for Mirrabei Drive Extension.

3 INTERSECTION ANALYSIS

Traffic generation for the proposed Group Centre and suburb developments was calculated using the ACT Residential Subdivision Code and the RTA Guide to Traffic Generating Developments (2002).

The adopted traffic generation rates were:

Supermarket	155 peak hour trips per 1000 m2 GLFA (10% daily rate)
Retail	121 daily trips per 100 m2 GLFA
Commercial	10 daily trips per 100m2 GFA
Community facility	4 daily trips per 100m2 GFA
Multi-unit dwelling	6 daily trips per dwelling
Single dwellings	8 daily trips per dwelling

SIDRA analysis was performed on the following intersections:

- Mirrabei Drive Extension / Moncrieff Group Centre
- Mirrabei Drive Extension / Moncrieff East West Access Road
- Road 4 / Road 3
- Road 13 / Road 3
- Road 2 / Road 3

Figure 1 shows a schematic of the Group Centre, traffic generation and anticipated movements. Table 5 shows the level of service criteria for intersection with the summarised results in Table 3-2 and Table 3-3.

Based on the SIDRA outputs, the proposed intersection arrangements for both AM and PM peak scenarios for the Mirrabei Drive Intersections and Moncrieff West Internal intersections would provide acceptable levels of service.

Figure 1 Moncrieff Group Centre Traffic Flows

Table 5 Level of Service Criteria for Intersections

Level of Service	Average Delay per Vehicle	Description for traffic signals and Roundabouts	Description for give way and stop signs
	(seconds)		
A	<14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity and accident study required
E	57 to 70	At capacity, at signals, incidents will cause excessive delays, roundabouts require other control mode	At capacity, requires other control mode

Source: RTA Guide to Traffic Generating Developments 2002

Table 6Summary of SIDRA outputs for year 2031 – Mirrabei Drive ExtensionIntersections

Intersection	Year	Average Level of Service (LOS)	Average Delay	Queue
Mirrabei Drive Extension /	AM Peak	В	24.1 seconds	80.0 m Moncrieff East Left/Right Movement
Moncrieff Group Centre	PM Peak	С	28.9 seconds	58.7 m Mirrabei Drive Extension South Through Movement
Mirrabei Drive Extension /	AM Peak	С	34.3 seconds	99.4 m Mirrabei Drive Extension North Through movement
East West Access Road	PM Peak	С	36.2 seconds	87.8 m Mirrabei Drive Extension South Through movement

Table 7Summary of SIDRA outputs 2031 AM Peak – Unsignalised Internal
Intersections

Intersection	Worst LOS	Average Delay (seconds)	Queue
T Intersection Road 4 / Road 3	A	7.2	5.8 m Road 3 Right Movement
T Intersection Road 13 / Road 3	A	6.8	5.0 m Road 13 Movement
T Intersection Road 1 / Road 3	A	6.9	2.2 m Road 3 South Movement
T Intersection Road 5 / Road 15	A	8.6	1.1 m Road 15 south Movement
Road 01 / Road 15	В	20.6	37.2 Road 15 north Movement
Road 05 / Road 03	A	5.4	1.3 Road 3 west Movement
Road 10 / Road 03	A	5.5	2.2 Road 10 approach

Appendix A

Final Sidra Results

Mirrabei Drive South

Updated 2031 Mirrabei Drive Moncrieff Group Centre AM peak Signals - Fixed Time Cycle Time = 60 seconds (Practical Cycle Time)

Movem	Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: N	/irrabei	Drive South											
2	Т	319	3.0	0.354	21.4	LOS B	4.0	29.0	0.88	0.71	35.8		
3	R	20	3.0	0.109	35.5	LOS C	0.6	4.1	0.94	0.70	29.4		
Approac	h	339	3.0	0.354	22.2	LOS B	4.0	29.0	0.88	0.71	35.4		
East: Mo	oncrieff	East											
4	L	222	3.0	0.658	25.9	LOS B	11.1	80.0	0.89	0.85	35.1		
6	R	221	3.0	0.658	24.0	LOS B	11.1	80.0	0.89	0.84	31.7		
Approac	:h	443	3.0	0.658	24.9	LOS B	11.1	80.0	0.89	0.84	33.4		
North: M	lirrabei l	Drive North											
7	L	21	3.0	0.678	31.8	LOS C	8.7	62.3	0.96	0.89	33.1		
8	Т	589	3.0	0.678	24.3	LOS B	8.7	62.5	0.96	0.85	34.0		
Approac	h	610	3.0	0.678	24.5	LOS B	8.7	62.5	0.96	0.85	34.0		
All Vehic	les	1392	3.0	0.678	24.1	LOS B	11.1	80.0	0.92	0.81	34.1		

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians														
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective							
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate							
		ped/h	sec		ped	m		per ped							
P1	Across S approach	21	24.3	LOS C	0.0	0.0	0.90	0.90							
P3	Across E approach	21	23.4	LOS C	0.0	0.0	0.88	0.88							
All Ped	estrians	42	23.9	LOS C			0.89	0.89							

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Wednesday, 26 February 2014 2:29:50 PM SIDRA INTERSECTION 5.1.7.2056 Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA 20140226\20140226- MD- Group Centre Access.sip 8000937, BROWN CONSULTING, FLOATING

Updated 2031 Mirrabei Drive Moncrieff Group Centre PM peak Signals - Fixed Time Cycle Time = 70 seconds (Practical Cycle Time)

Movem	Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: N	/irrabei	Drive South										
2	Т	530	3.0	0.565	25.8	LOS B	8.2	58.7	0.93	0.78	33.4	
3	R	200	3.0	0.586	37.5	LOS C	6.5	46.8	0.96	0.81	29.6	
Approac	h	730	3.0	0.586	29.0	LOS C	8.2	58.7	0.94	0.79	32.2	
East: Mo	oncrieff	East										
4	L	18	3.0	0.062	26.4	LOS B	0.9	6.2	0.73	0.73	34.8	
6	R	18	3.0	0.062	26.3	LOS B	0.9	6.2	0.73	0.72	34.8	
Approac	:h	36	3.0	0.062	26.4	LOS B	0.9	6.2	0.73	0.72	34.8	
North: M	lirrabei	Drive North										
7	L	199	3.0	0.529	33.8	LOS C	7.3	52.3	0.92	0.82	31.3	
8	Т	287	3.0	0.529	25.5	LOS B	7.6	54.4	0.92	0.76	33.3	
Approac	:h	486	3.0	0.529	28.9	LOS C	7.6	54.4	0.92	0.79	32.5	
All Vehic	les	1252	3.0	0.586	28.9	LOS C	8.2	58.7	0.92	0.78	32.4	

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians														
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective							
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate							
		ped/h	sec		ped	m		per ped							
P1	Across S approach	53	29.3	LOS C	0.1	0.1	0.91	0.91							
P3	Across E approach	53	25.7	LOS C	0.1	0.1	0.86	0.86							
All Pedestrians		106	27.5	LOS C			0.89	0.89							

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Wednesday, 26 February 2014 2:35:52 PM SIDRA INTERSECTION 5.1.7.2056 Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA 20140226\20140226- MD- Group Centre Access.sip 8000937, BROWN CONSULTING, FLOATING

2031 Mirrabei Drive / Road 01 / Road 02

AM peak

Signals - Fixed Time Cycle Time = 105 seconds (Optimum Cycle Time - Minimum Delay)

Movem	ent Per	formanc <u>e</u> -	Vehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: N	/irrabei [Drive South	%	V/C	sec		ven	m		per ven	Km/n
1	I	21	0.0	0 020	8 1	LOSA	0.1	0.6	0 14	0.62	49.0
2	T	215	3.0	0.531	50.0		5.4	39.1	0.99	0.78	24.3
3	R	50	3.0	0.260	55.6	LOS D	2.4	17.6	0.96	0.74	22.9
Approac	:h	286	2.8	0.531	47.9	LOS D	5.4	39.1	0.92	0.76	25.0
East: Ro	ad 01										
4	L	195	3.0	0.312	10.9	LOS A	2.5	17.7	0.33	0.68	46.3
5	Т	33	0.0	0.412	39.2	LOS C	7.3	52.3	0.91	0.74	26.7
6	R	130	3.0	0.412	45.2	LOS D	7.3	52.3	0.91	0.80	24.3
Approac	h	358	2.7	0.412	25.9	LOS B	7.3	52.3	0.60	0.73	33.4
North: N	lirrabei D	rive North									
7	L	83	3.0	0.082	7.5	LOS A	0.4	3.0	0.17	0.61	48.5
8	Т	600	3.0	0.627	38.3	LOS C	13.8	99.4	0.95	0.80	28.0
9	R	34	0.0	0.087	40.5	LOS C	1.3	9.2	0.80	0.72	28.4
Approac	h	717	2.9	0.627	34.8	LOS C	13.8	99.4	0.85	0.78	29.4
West: R	oad 02										
10	L	95	0.0	0.118	9.3	LOS A	0.8	5.7	0.24	0.65	47.8
11	Т	42	0.0	0.286	38.0	LOS C	5.0	35.3	0.88	0.71	27.4
12	R	74	0.0	0.286	45.8	LOS D	5.0	35.3	0.88	0.79	27.1
Approac	:h	211	0.0	0.286	27.8	LOS B	5.0	35.3	0.60	0.71	33.8
All Vehic	cles	1571	2.4	0.627	34.3	LOS C	13.8	99.4	0.77	0.75	29.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Mover	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P1	Across S approach	21	46.7	LOS E	0.1	0.1	0.94	0.94						
P3	Across E approach	21	33.6	LOS D	0.1	0.1	0.80	0.80						
P5	Across N approach	53	46.7	LOS E	0.1	0.1	0.94	0.94						
P7	Across W approach	53	46.7	LOS E	0.1	0.1	0.94	0.94						
All Ped	estrians	148	44.8	LOS E			0.92	0.92						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

2031 Mirrabei Drive / Road 01 / Road 02 PM peak

Signals - Fixed Time Cycle Time = 105 seconds (Optimum Cycle Time - Minimum Delay)

Movem	ent Per	formance - \	Vehicles								
May ID	Ture	Demand	111/	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
	Turn	Flow	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Coutby	/imahai [ven/n	%	V/C	sec		ven	m		per ven	km/n
South: IN		Jrive South	0.0	0.074	<u> </u>	100.4	0.4		0.40	0.00	40.7
1	L	66	0.0	0.071	8.4	LOSA	0.4	2.6	0.18	0.63	48.7
2	Т	540	3.0	0.564	37.6	LOS C	12.2	87.8	0.93	0.78	28.3
3	R	176	3.0	0.473	43.0	LOS D	7.6	54.4	0.88	0.80	26.6
Approac	h	782	2.7	0.564	36.3	LOS C	12.2	87.8	0.85	0.77	28.9
East: Ro	ad 01										
4	L	45	3.0	0.044	8.3	LOS A	0.2	1.6	0.16	0.63	48.9
5	Т	38	0.0	0.283	38.0	LOS C	4.9	35.0	0.88	0.70	27.4
6	R	75	3.0	0.283	43.9	LOS D	4.9	35.0	0.88	0.78	24.8
Approac	h	158	2.3	0.283	32.3	LOS C	4.9	35.0	0.68	0.72	29.8
North: M	lirrabei D	Drive North									
7	L	117	3.0	0.143	8.2	LOS A	0.9	6.5	0.23	0.62	47.8
8	Т	194	3.0	0.479	49.7	LOS D	4.9	35.1	0.99	0.77	24.4
9	R	85	0.0	0.434	57.5	LOS E	4.3	29.9	0.98	0.77	23.3
Approac	h	396	2.4	0.479	39.1	LOS C	4.9	35.1	0.76	0.73	28.0
West: Re	oad 02										
10	L	31	0.0	0.045	10.0	LOS A	0.3	2.2	0.27	0.64	47.1
11	Т	29	0.0	0.118	36.3	LOS C	2.0	14.1	0.85	0.64	28.3
12	R	19	0.0	0.118	44.1	LOS D	2.0	14.1	0.85	0.76	27.9
Approac	h	79	0.0	0.118	28.0	LOS B	2.0	14.1	0.62	0.67	33.4
All Vehic	les	1415	2.4	0.564	36.2	LOS C	12.2	87.8	0.80	0.75	29.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Mover	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P1	Across S approach	21	46.7	LOS E	0.1	0.1	0.94	0.94						
P3	Across E approach	21	46.7	LOS E	0.1	0.1	0.94	0.94						
P5	Across N approach	53	46.7	LOS E	0.1	0.1	0.94	0.94						
P7	Across W approach	53	33.6	LOS D	0.1	0.1	0.80	0.80						
All Ped	estrians	148	42.0	LOS E			0.89	0.89						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

2031 Moncrieff Internal - Road 4 and Road 3 AM peak Giveway / Yield (Two-Way)

Movem	ient Per	formance - \	/ehicles							der aller setti	
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Average Speed km/h
East: Ro	oad 3 Eas	st								porton	(KITI) (T
5	Т	11	3.0	0.133	6.8	LOS A	0.5	3.9	0.24	0.42	42.8
6	R	86	3.0	0.133	8.3	LOS A	0.5	3.9	0.24	0.65	41.7
Approac	ch	97	3.0	0.133	8.2	LOS A	0.5	3.9	0.24	0.63	41.8
North: R	Road 4										
7	L	11	3.0	0.015	6.5	LOS A	0.0	0.0	0.00	0.59	43.3
9	R	17	3.0	0.015	6.8	LOS A	0.0	0.0	0.00	0.66	43.0
Approac	ch	27	3.0	0.015	6.7	NA	0.0	0.0	0.00	0.63	43.1
West: R	oad 3 We	est									
10	L	137	3.0	0.085	6.7	LOS A	0.6	4.6	0.15	0.52	42.8
11	Т	10	3.0	0.085	5.4	LOS A	0.6	4.6	0.15	0.45	43.7
Approac	ch	147	3.0	0.085	6.6	LOS A	0.6	4.6	0.15	0.52	42.8
All Vehic	cles	271	3.0	0.133	7.2	NA	0.6	4.6	0.17	0.57	42.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 3:47:39 PM SIDRA INTERSECTION 5.1.7.2056

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.7.2056 www.sidrasolutions.com Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA\191212- Moncreiff West Internal Roads.sip 8000937, BROWN CONSULTING, FLOATING

2031 Moncrieff Internal - Road 13 and Road 3 AM peak Giveway / Yield (Two-Way)

Movem	nent Pei	rformance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Average Speed km/b
East: Ro	oad 3 So	uth								porven	TAT 1711
5	Т	11	1.0	0.018	0.6	LOS A	0.1	0.7	0.21	0.00	46.9
6	R	11	1.0	0.018	7.3	LOS A	0.1	0.7	0.21	0.70	42.7
Approac	ch	21	1.0	0.018	3.9	NA	0.1	0.7	0.21	0.35	44.7
North: R	load 13										
7	L	112	1.0	0.158	6.5	LOS A	0.7	5.0	0.07	0.57	43.1
9	R	112	1.0	0.158	6.8	LOS A	0.7	5.0	0.07	0.64	42.8
Approac	ch	223	1.0	0.158	6.7	LOS A	0.7	5.0	0.07	0.60	42.9
West: R	oad 3 No	orth									
10	L	5	1.0	0.008	6.4	LOS A	0.0	0.0	0.00	0.78	43.3
11	Т	10	1.0	0.008	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approac	h	15	1.0	0.008	2.2	NA	0.0	0.0	0.00	0.27	47.5
All Vehic	cles	259	1.0	0.158	6.2	NA	0.7	5.0	0.07	0.56	43.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

8000937, BROWN CONSULTING, FLOATING

Processed: Thursday, 20 December 2012 3:48:06 PM SIDRA INTERSECTION 5.1.7.2056

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA\191212- Moncreiff West Internal Roads.sip

2031 Moncrieff Internal - Road 2 and Road 3 AM peak Giveway / Yield (Two-Way)

Movem	ent Pei	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Average Speed km/h
South: R	load 3 S	outh									
2	Т	33	1.0	0.059	7.9	LOS A	0.2	1.7	0.09	0.54	49.3
3	R	17	1.0	0.059	9.4	LOS A	0.2	1.7	0.09	0.75	47.7
Approac	h	49	1.0	0.059	8.4	LOS A	0.2	1.7	0.09	0.61	48.7
East: Ro	ad 2										
4	L	21	1.0	0.017	8.2	LOS A	0.0	0.0	0.00	0.66	49.0
6	R	11	1.0	0.017	6.7	LOS A	0.0	0.0	0.00	0.67	43.0
Approac	h	32	1.0	0.017	7.7	NA	0.0	0.0	0.00	0.66	46.9
North: R	oad 3 N	orth									
7	L	209	1.0	0.116	6.4	LOS A	0.0	0.0	0.00	0.62	43.3
8	Т	5	1.0	0.116	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	215	1.0	0.116	6.3	NA	0.0	0.0	0.00	0.61	43.6
All Vehic	les	296	1.0	0.116	6.8	NA	0.2	1.7	0.02	0.61	44.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

8000937, BROWN CONSULTING, FLOATING

Processed: Thursday, 20 December 2012 3:46:51 PM SIDRA INTERSECTION 5.1.7.2056 SIDRA INTERSECTION 5.1.7.2056 www.sidrasolutions.com
Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA\191212- Moncreiff West Internal Roads.sip

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Road 15

Road 05 / Road 15 AM Peak 2031 Giveway / Yield (Two-Way)

Movem	ent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Road 15										All and the second seco	
1	L	15	1.0	0.041	8.3	LOS A	0.2	1.1	0.37	0.60	41.6
3	R	16	1.0	0.041	8.6	LOS A	0.2	1.1	0.37	0.68	41.5
Approach		31	1.0	0.041	8.4	LOS A	0.2	1.1	0.37	0.64	41.6
East: Ro	ad 05 w	est									
4	L	144	1.0	0.152	6.4	LOS A	0.0	0.0	0.00	0.73	43.3
5	Т	143	1.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approach		287	1.0	0.152	3.2	NA	0.0	0.0	0.00	0.37	46.4
West: R	oad 05 e	ast									
11	т	16	1.0	0.026	1.2	LOS A	0.1	0.9	0.36	0.00	44.9
12	R	19	1.0	0.026	8.0	LOS A	0.1	0.9	0.36	0.72	42.4
Approach		35	1.0	0.026	4.9	NA	0.1	0.9	0.36	0.39	43.5
All Vehicles		353	1.0	0.152	3.8	NA	0.2	1.1	0.07	0.39	45.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 4:29:06 PM SIDRA INTERSECTION 5.1.7.2056 Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA\181212- MD- Group Centre Access.sip 8000937, BROWN CONSULTING, FLOATING

Road 01 / Road 15 AM Peak 2031 Giveway / Yield (Two-Way)

Moven	nent Per	formance	- Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Average Speed km/h
South: Road 15 south									portection		
1	L	11	1.0	0.065	11.6	LOS A	0.2	1.7	0.55	0.72	39.1
2	Т	11	1.0	0.065	12.1	LOS A	0.2	1.7	0.55	0.73	44.6
3	R	11	1.0	0.065	11.9	LOS A	0.2	1.7	0.55	0.85	39.0
Approach 32		1.0	0.065	11.9	LOS A	0.2	1.7	0.55	0.77	40.8	
East: R	oad 01 w	est									
4	L	11	1.0	0.212	6.7	LOS A	1.4	9.9	0.18	0.74	43.2
5	Т	396	1.0	0.212	0.2	LOS A	1.4	9.9	0.18	0.00	47.7
6	R	2	1.0	0.212	8.7	LOS A	1.4	9.9	0.18	0.88	48.6
Approach 408		408	1.0	0.212	0.4	NA	1.4	9.9	0.18	0.02	47.6
North: F	Road 15 n	orth									
7	L	11	1.0	0.634	20.4	LOS B	5.3	37.2	0.67	0.74	38.5
8	Т	142	1.0	0.634	19.1	LOS B	5.3	37.2	0.67	1.05	39.0
9	R	153	1.0	0.634	20.6	LOS B	5.3	37.2	0.67	1.10	38.4
Approach 3		305	1.0	0.634	19.9	LOS B	5.3	37.2	0.67	1.06	38.7
West: R	oad 01 e	ast									
10	L	21	1.0	0.038	10.1	LOS A	0.3	1.8	0.55	0.34	47.4
11	Т	31	1.0	0.038	1.9	LOS A	0.3	1.8	0.55	0.00	42.9
12	R	11	1.0	0.038	8.7	LOS A	0.3	1.8	0.55	0.76	42.2
Approach		62	1.0	0.038	5.9	NA	0.3	1.8	0.55	0.25	44.2
All Vehicles		807	1.0	0.634	8.7	NA	5.3	37.2	0.41	0.46	43.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 4:31:19 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.7.2056 www.sidrasolutions.com Project: H:\C11000\C11075\technical\TRAFFIC\SIDRA\181212- MD- Group Centre Access.sip

8000937, BROWN CONSULTING, FLOATING